Скачать урок превращения элементарных частиц. Элементарные частицы и их свойства. Биография Эрнеста Резерфорда

Плодово-ягодные 17.12.2023
Плодово-ягодные

1 слайд

Элементарные частицы Муниципальное бюджетное нетиповое общеобразовательное учреждение "Гимназия №1 имени Тасирова Г.Х. города Белово" Презентация к уроку физики в 11 классе (профильный уровень) Выполнила: Попова И.А., учитель физики Белово, 2012 г.

2 слайд

Цель: Ознакомление с физикой элементарных частиц и систематизация знаний по теме. Развитие абстрактного, экологического и научного мышления учащихся на основе представлений об элементарных частицах и их взаимодействиях

3 слайд

Сколько элементов в таблице Менделеева? Всего лишь 92. Как? Там больше? Верно, но все остальные - искусственно полученные, они в природе не встречаются. Итак - 92 атома. Из них тоже можно составить молекулы, т.е. вещества! Но то, что все вещества состоят из атомов, утверждал еще Демокрит (400 лет до нашей эры). Он был большим путешественником, и его любимым изречением было: "Не существует ничего, кроме атомов и чистого пространства, все остальное - воззрение"

4 слайд

Античастица - частица, имеющая ту же массу и спин, но противоположные значения зарядов всех типов; Хронология физики частиц Для любой элементарной частицы есть своя античастица Дата Фамилия ученого Открытие (гипотеза) 400 лет до н.э. Демокрит Атом НачалоXXв. Томсон Электрон 1910 г. Э. Резерфорд Протон 1928 г. Дирак иАндерсон Открытие позитрона 1928 г. А. Эйнштейн Фотон 1929 г. П. Дирак Предсказание существованияантичастиц 1931 г Паули Открытие нейтрино и антинейтрино 1932 г. Дж. Чедвик Нейтрон 1932 г античастица - позитроне+ 1930 г. В. Паули Предсказание существованиянейтриноn 1935 г. Юкава Открытие мезона

5 слайд

Хронология физики частиц Все эти частицы были нестабильными, т.е. распадались на частицы с меньшими массами, в конечном счете превращаясь в стабильные протон, электрон, фотон и нейтрино (и их античастицы). Перед физиками - теоретиками встала труднейшая задача упорядочить весь обнаруженный "зоопарк" частиц и попытаться свести число фундаментальных частиц к минимуму, доказав, что другие частицы состоят из фундаментальных частиц Дата Открытие (гипотеза) Второй этап 1947 г. Открытиеπ-мезонаpв космических лучах До начала 1960-х гг. Было открыто несколько сотен новых элементарных частиц, имеющих массы в диапазоне от 140 МэВ до 2 ГэВ.

6 слайд

Хронология физики частиц Эта модель к настоящему времени превратилась в стройную теорию всех известных типов взаимодействий частиц. Дата Фамилия ученого Открытие (гипотеза) Третий этап 1962 г. М.Гелл-Манни независимо Дж. Цвейг Предложили модель строения сильно взаимодействующих частиц из фундаментальных частиц - кварков 1995 г. Открытие последнего из ожидавшихся, шестого кварка

7 слайд

Как обнаружить элементарную частицу? Обычно изучают и анализируют следы (траектории или треки), оставленные частицами, по фотографиям

8 слайд

Классификация элементарных частиц Все частицы делятся на два класса: Фермионы, которые составляют вещество; Бозоны, через которые осуществляется взаимодействие.

9 слайд

Классификация элементарных частиц Фермионы подразделяются на лептоны кварки. Кварки участвуют в сильных взаимодействиях, а также в слабых и в электромагнитных.

10 слайд

Кварки Гелл-Манн и Георг Цвейг предложили кварковую модель в 1964 г. Принцип Паули: в одной системе взаимосвязанных частиц никогда не существует хотя бы две частицы с тождественными параметрами, если эти частицы обладают полуцелым спином. М. Гелл-Манн на конференции в 2007 г.

11 слайд

Что такое спин? Спин демонстрирует, что существует пространство состояний, никак не связанное с перемещением частицы в обычном пространстве; Спин (от англ. to spin – крутиться) часто сравнивают с угловым моментом «быстро вращающегося волчка» - это неверно! Спин является внутренней квантовой характеристикой частицы, которая не имеет аналога в классической механике; Спин (от англ. spin - вертеть[-ся], вращение) - собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого

12 слайд

Спины некоторых микрочастиц Спин Ообщееназвание частиц Примеры 0 скалярные частицы π-мезоны,K-мезоны,хиггсовскийбозон, атомы и ядра4He, чётно-чётные ядра, парапозитроний 1/2 спинорные частицы электрон, кварки, протон, нейтрон, атомы и ядра3He 1 векторные частицы фотон, глюон, векторные мезоны, ортопозитроний 3/2 спин-векторные частицы Δ-изобары 2 тензорные частицы гравитон, тензорные мезоны

13 слайд

Кварки Кварки участвуют в сильных взаимодействиях, а также в слабых и в электромагнитных. Заряды кварков дробные - от -1/3e до +2/3e (e - заряд электрона). Кварки в сегодняшней Вселенной существуют только в связанных состояниях - только в составе адронов. Например, протон - uud, нейтрон - udd.

14 слайд

Четыре вида физических взаимодействий гравитационные, электромагнитные, слабые, сильные. Слабое взаимодействие - меняет внутреннюю природу частиц. Сильные взаимодействия - обусловливают различные ядерные реакции, а также возникновение сил, связывающих нейтроны и протоны в ядрах. Ядерные Механизм взаимодействий один: за счет обмена другими частицами - переносчиками взаимодействия.

15 слайд

Электромагнитное взаимодействие: переносчик - фотон. Гравитационное взаимодействие: переносчики - кванты поля тяготения - гравитоны. Слабые взаимодействия: переносчики - векторные бозоны. Переносчики сильных взаимодействий: глюоны (от английского слова glue - клей), с массой покоя равной нулю. Четыре вида физических взаимодействий И фотоны, и гравитоны не имеют массы (массы покоя) и всегда движутся со скоростью света. Существенным отличием переносчиков слабого взаимодействия от фотона и гравитона является их массивность. Взаимодействие Радиус действия Конст.взаимдств. Гравитационное Бесконечно большой 6.10-39 Электромагнитное Бесконечно большой 1/137 Слабое Не превышает 10-16см 10-14 Сильное Не превышает 10-13см 1

16 слайд

17 слайд

Кварки имеют свойство, называемое цветовой заряд. Существуют три вида цветового заряда, условно обозначаемые как синий, зелёный Красный. Каждый цвет имеет дополнение в виде своего антицвета -антисиний, антизелёный и антикрасный. В отличие от кварков, антикварки обладают не цветом, а антицветом, то есть противоположным цветовым зарядом. Свойства кварков: цвет

18 слайд

У кварков имеется два основных типа масс, несовпадающих по величине: масса токового кварка, оцениваемая в процессах со значительной передачей квадрата 4-импульса, и структурная масса (блоковая, конституэнтная масса); включает в себя ещё массу глюонного поля вокруг кварка и оценивается из массы адронов и их кваркового состава. Свойства кварков: масса

19 слайд

Каждый аромат (вид) кварка характеризуется такими квантовыми числами, как изоспин Iz, странность S, очарование C, прелесть (боттомность, красота) B′, истинность (топность) T. Свойства кварков: аромат

20 слайд

Свойства кварков: аромат Символ Название Заряд Масса рус. англ. Первое поколение d нижний down −1/3 ~ 5 МэВ/c² u верхний up +2/3 ~ 3 МэВ/c² Второе поколение s странный strange −1/3 95 ± 25 МэВ/c² c очарованный charm (charmed) +2/3 1,8 ГэВ/c² Третье поколение b прелестный beauty (bottom) −1/3 4,5 ГэВ/c² t истинный truth (top) +2/3 171 ГэВ/c²

21 слайд

22 слайд

23 слайд

Характеристики кварков Характеристика Тип кварка d u s c b t Электрический зарядQ -1/3 +2/3 -1/3 +2/3 -1/3 +2/3 Барионное числоB 1/3 1/3 1/3 1/3 1/3 1/3 СпинJ 1/2 1/2 1/2 1/2 1/2 1/2 ЧетностьP +1 +1 +1 +1 +1 +1 ИзоспинI 1/2 1/2 0 0 0 0 Проекция изоспинаI3 -1/2 +1/2 0 0 0 0 Странностьs 0 0 -1 0 0 0 Charm c 0 0 0 +1 0 0 Bottomness b 0 0 0 0 -1 0 Topness t 0 0 0 0 0 +1 Масса в составе адрона, ГэВ 0.31 0.31 0.51 1.8 5 180 Масса "свободного" кварка, ГэВ ~0.006 ~0.003 0.08-0.15 1.1-1.4 4.1-4.9 174+5

24 слайд

25 слайд

26 слайд

27 слайд

При каких ядерных процессах возникает нейтрино? А. При α - распаде. Б. При β - распаде. В. При излучении γ - квантов. Г. При любых ядерных превращениях

28 слайд

При каких ядерных процессах возникает антинейтрино? А. При α - распаде. Б. При β - распаде. В. При излучении γ - квантов. Г. При любых ядерных превращениях

Каптелова Н.В., учитель физики МОУ «Гимназия № 79» г. Барнаула Алтайского края

11 класс

Урок по теме «Элементарные частицы» (2 часа).

Учебный предмет – физика

Уровень – базовый

Профиль класса – гуманитарный

Используемый текст - § 64 «Элементарные частицы» (Мансуров А.Н., Мансуров Н.А., учебник «Физика-10-11» для гуманитарных школ)

Технология «Развитие Критического Мышления через Чтение и Письмо» (РКМЧП)

Тип урока: работа с информационным текстом

Цели:

    дидактическая – через опосредованное изучение текста сформировать у учащихся систему научных знаний об элементарных частицах

    развивающая – выработать у школьников приёмы эффективной переработки учебной информации, продолжить формирование способа самостоятельного обучения, познавательных и коммуникативных компетентностей

    воспитательная – продолжить формирование у учащихся уверенности в своих собственных познавательных возможностях, диалектико-материалистического мировоззрения

    методическая – создать условия для освоение учащимися способа самостоятельного обучения на основе технологии РКМЧП

Ожидаемый результат:

    усвоение учащимися системы научных знаний об элементарных частицах и представление её в виде кластера;

    получение и осмысление каждым учеником собственного опыта самостоятельной познавательной деятельности на основе работы с текстом через индивидуальную, парную, групповую, коллективную формы работы (технология РКМЧП).

Примечание: Кластер - графический способ, позволяющий представить информацию в структурированном и систематизированном виде, выявить ключевые слова темы. Кластер представляет собой графическую схему, состоящую из овалов. В центре кластера, в главном овале – основная проблема, тема, идея. В овалах следующего уровня – классифицирующие признаки или основания для систематизации, в овалах третьего уровня – дальнейшая детализация и т.д. Кластеры могут быть очень разветвлёнными, поэтому всегда нужно выбрать тот уровень детализации, на котором можно остановиться. С помощью кластеров можно в систематизированном виде представить большие объёмы информации.

Кластер содержит ключевые слова, ключевые идеи с указанием логических связей между текстовыми субъектами. Связи придают картине целостность и наглядность.

Кластер (как и все графические схемы) является моделью изучаемой темы, позволяет увидеть тему целиком, «с высоты птичьего полёта». Повышается мотивация, т.к. легче воспринимаются идеи темы. Человеку всегда нужны графические образы. Мозг запоминает модели. Представление информации учащимися в виде кластера способствует её творческой переработке, поэтому обеспечивает усвоение информации на уровне понимания. Кластеры (как и другие схемы) позволяют «пораскачивать» своё мышление, сделать его более гибким, избавиться от стереотипов, догматическое мышление превратить в критическое.

Важно и то, что построение кластеров позволяет выявить систему ключевых слов, которые могут быть использованы для поиска в Интернете, а также для определения основных направлений исследований учащихся, выбора тем учебных проектов.

Домашнее задание (внеклассная работа) :

1. § 65 (самостоятельно по технологии РКМЧП)

2. Кластеры, выполненные с помощью ИКТ

(2 и 3 по желанию)

Сценарий урока.

    Вызов.

Цели этапа:

Побуждение к работе с новой информацией, пробуждение интереса к теме

- вызов «на поверхность» имеющихся знаний по теме

- бесконфликтный обмен мнениями

    «Наводящие вопросы»

    «Кластер»

    1. Оргмомент

2. Учащимся предлагаются вопросы для обдумывания и обсуждения:

Выход на логическую цепочку: природа-тело-вещество-молекула-атом-ядро-нуклоны (протон, нейтрон)-электрон.

    Вспомните, какие элементарные частицы вам известны? Представьте в виде кластера.

(Протон, нейтрон, электрон, фотон, π-мезон)

Ученики работают индивидуально в тетрадях, затем в парах , по их предложениям учитель на доске оформляет кластер. Один из предложенных учениками кластер:

    1. Учитель: Начиная с 1932 года открыто более 400(!) элементарных частиц .

    Может ли такое их количество претендовать на роль «первокирпичиков Вселенной», истинно элементарных частиц?

    1. «Думай самостоятельно/в паре/группе». Коллективное обсуждение ответов. Осмысление и формулировка цели урока . Планирование деятельности. («Изучить элементарные частицы через их классификацию и систематизацию по выделенным характеристикам, результат представить в виде кластера».

      Предлагается самостоятельно изучить текст §64 «Физика-10-11» Мансуров А.Н., Мансуров Н.А), информацию представить в виде кластера.

  1. Осмысление

Цели этапа:

Получение новых знаний

Освоение разных типов чтения: ознакомительного, изучающего, усваивающего, поискового, приёмов осмысления информационного текста

Развитие аналитических, дискуссионных, коммуникативных навыков

    «Система И.Н.С.Е.Р.Т.»

    «Кластер»

    «Думай самостоятельно/в паре/ в группе»

Самостоятельная работа с текстом

    Восприятие информации. На этом этапе ученик работает индивидуально («Думай самостоятельно»). Ознакомительное чтение, получение общего представления по теме текста.

    Изучающее чтение. Индивидуальная работа («Думай самостоятельно»). Операции смыслового восприятия элементов текста, понимание слов, предложений, абзацев, вычленение текстовых субъектов (основных понятий, ключевых слов, идей), выявление связей (логических, причинно-следственных, пространственных, временных и т.д.) текстовых субъектов. Понимание связи содержания данного текста с содержанием других изученных текстов, интерпретация данного текста на основе этой связи. Помогает осмыслить содержание применение маркировки текста И.Н.С.Е.Р.Т.: (I .N .S .E .R .T . - "Interactive Notation System for Enhanced Reading and Thinking ")

    - «известно»

- - «противоречит представлениям»

+ - «интересное и неожиданное»

? - «узнать поподробнее»

! - «важно»

    Усваивающее чтение. Проверка понимания текста. Ученики в парах («Думай в паре») проговаривают своими словами друг другу ответы на вопросы к тексту.

    Переработка информации. Индивидуальная работа («Думай самостоятельно»). Разбиение информации на связанные части. Выделение оснований для систематизации и классификации полученной информации.

    Синтез переработанной информации. Индивидуальная работа («Думай самостоятельно»). Группировка, комбинирование информации, составление кластера. Перевод полученной информации «на другой язык»: с языка слов на язык схем, с вербального языка на графический.

    Представление и защита индивидуальных кластеров в парах («Думай в паре»), затем в группах («Думай вместе»).

«Обратный перевод» информации: с языка схем на язык слов, с графического языка на вербальный, причём информация сообщается своими словами. Обмен идеями в дискуссии или полемике. Аргументация, конструктивная критика, уточнение, совместная доработка кластера.

    Рефлексия

Обдумать смысл пройденного;

Взглянуть на содержание урока в свете собственного жизненного опыта

«Возвращение к кластеру»

«Выходная карта»

    Представление и защита нескольких вариантов групповых кластеров перед классом, коллективное обсуждение.

Предполагаемый вариант итогового кластера:

2. Задание: Сравните данный кластер с кластером, предложенным в начале урока. (!!!)

Найдите место на нём для электрона, протона, нейтрона, фотона, π-мезона.

Сделайте вывод. (Значительное приращение знаний об элементарных частицах!)

3. (Подведение итогов и мотивация на дальнейшую познавательную деятельность). Вернёмся к вопросам, с которых начали урок. Нашли ли на них ответы? Какие вопросы остались без ответа? Какие возникли новые? Где искать ответы?

    Из чего состоит окружающий мир?

    Напоминает ли структура вещества бесконечную череду вложенных друг в друга матрёшек или процесс деления прерывается, когда обнаруживается неделимая элементарная частица?

    Что представляют из себя самые первичные фундаментальные частицы, из которых состоят все остальные?

    Существует ли в природе такой уровень организации материи, глубже которого ничего нет?

    Может ли такое количество (более 400) претендовать на роль «первокирпичиков Вселенной», истинно элементарных частиц?

    Как ориентироваться в таком изобилии элементарных частиц?

    Какие частицы являются истинно «элементарными»?

(Думай самостоятельно/в паре/ группе). Обсуждение.

    Индивидуальная письменная работа (10 мин) «Выходная карта» - 1) самая важная мысль урока; 2) один вопрос по теме урока 3) общий комментарий по материалу урока

    Сделайте самооценку своей работы на уроке (доволен собой, не очень, не доволен, почему?).

IV . Домашнее задание (внеклассная работа)

Дать возможность учащимся вести самостоятельную работу по углублению знаний, полученных во время урока;

Отрабатывать навык самостоятельной учебной деятельности;

Развивать творческие способности школьников

1.Изучить § 65 (самостоятельно по технологии РКМЧП)

2. Кластеры к § 65, выполненные с помощью ИКТ

3. Творческая работа по заинтересовавшей теме.

(2 и 3 по желанию)

Наблюдения за учащимися показывают, что построение кластеров воспринимается ими как творческая работа , где возможна реализация собственного видения проблемы, собственного подхода, вариативности, как средство самореализации, самоутверждения.

Возможность индивидуальной, парной, групповой и коллективной работы создаёт психологический комфорт учебного процесса. Включение каждого ученика в три вида

деятельности (думаю, пишу, проговариваю) обеспечивает «внутреннюю обработку информации». Эти факторы способствуют усвоению учащимися нового материала на уровне понимания, осмысления и развитию у них учебно-познавательной мотивации и активности (особенно у тех школьников, которые плохо вписываются в систему традиционного, иллюстративно-объяснительного обучения). И самое главное - они практически осваивают способ самостоятельного приобретения нового знания , у них формируется функциональная грамотность.

Вышеописанная технология обучения на основе творческой переработки текста позволяет учить интересно, быстро, качественно и даёт учащимся чувство удовлетворения.

Примеры выполнения кластеров по темам « Фундаментальные взаимодействия» и «Фундаментальные частицы»:

Урок физики в 11 классе

«МИР ЭЛЕМЕНТАРНЫХ ЧАСТИЦ»

Учитель физики

ГБОУ СОШ № 603 г.

Санкт - Петербурга

Дубиляс Наталья Юрьевна

(Слайд № 1) Тема: Элементарные частицы. Фундаментальные взаимодействия.

Цель: Продолжить формирование научно-материалистического мировоззрения и целостной Картины Мира на основе современных представлений о строении материи.

Задачи:

Образовательные :

Обеспечить усвоение знаний учащихся по теме «Элементарные частицы. Фундаментальные взаимодействия», дать понятие «элементарная частица» и показать историю развития теории элементарных частиц; познакомить учащихся с основами классификаций элементарных частиц; обобщить и закрепить знания о фундаментальных взаимодействиях.

Развивающие:

Совершенствование умения анализировать учебный материал; самостоятельно формулировать выводы, развития мышления, познавательной активности и самостоятельности.

Воспитывающие:

Воспитание интереса к предмету через занимательность материала, культуры учебной деятельности, создание благоприятной психологической обстановки на уроке, привитие уважения к достижениям современной науки.

Тип урока: урок изучения и первичного закрепления новых знаний.

Форма урока: лекция с элементами беседы и самостоятельной работы.

Методы обучения: словесные, наглядные, самостоятельная работа по выполнению теста.

Форма деятельности учащихся: фронтальная, коллективная, индивидуальная.

Оборудование: ПК, мультимедиапроектор, стандартное оборудование физического кабинета, раздаточный материал (таблицы)

План урока:

    Организационный этап.

    Актуализация опорных знаний.

    Изучение нового материала.

    Домашнее задание.

    Подведение итогов урока и рефлексия.

Ход урока:

    Организационный этап.

Приветствие, проверка готовности учащихся к уроку.

(Слайд № 2) У Пушкина есть удивительное стихотворение:

Эпиграф:

О! сколько нам открытий чудных

Готовят просвещенья дух

И опыт, сын ошибок трудных,

И гений, парадоксов друг,

И случай, бог-изобретатель…

А.С.Пушкин

Эти строки поражают глубиной мысли. В них – поэтическое выражение принципов современной физики. Здесь есть намек на метод последовательных приближений (опыт, сын ошибок трудных), на развитие через разрешение парадоксов, требующих гениальных идей (гений, парадоксов друг), на идею отбора информации из шума (случай – бог изобретатель). Можно сказать, что в этих строчках выражены принципы современного познания (принцип цикличности). Сегодня наш с вами урок будет посвящен самому передовому краю науки – физике элементарных частиц.

    Актуализация опорных знаний. (Слайд № 3)

Задание учащимся: ответить на вопросы:

1) Из чего состоит окружающий мир?

2) Из чего состоят тела?

3) Что является мельчайшей частицей вещества?

4) Из чего состоят молекулы?

5) Атом в переводе с греческого означает «неделимый». Так ли это на самом деле?

6) Что мы знаем о строении атома?

7) Какие элементарные частицы вам известны? Можно ли назвать их элементарными с точки зрения современной физики?

(фотон, протон, электрон, нейтрон, нейтрино)

    Изучение нового материала.

(Слайд № 4) На доске появилась схема:

Природа –

тело –

вещество –

молекула –

атом –

ядро –

нуклоны – протон, нейтрон

электрон.

(Слайд №4) Так возник новый раздел физики – физика элементарных частиц, которая изучает явления, происходящие на сверхмалых (R = 10 -15 t = 10 -8 1 ГэВ).

Рассмотрим основные характеристики уже известных нам элементарных частиц

(таблицу вклеить в тетрадь)

Частица

Символ

Масса покоя

Заряд

Время жизни

Электрон

Протон

Нейтрон

Нейтрино

Фотон

e

p

n

ν

γ

m e

1836 ,1 m e

1838,6 m e

10 – 4 m e

0

-1

+1

0

0

0

Стабилен

Стабилен

1000 с

Стабильно

Стабилен

Перед физикой встали определенные вопросы: (А какие вопросы могли бы поставить вы?)

    Каковы их свойства?

    Будут ли открыты новые? (слайд № 5)

(Слайд № 6) В истории развития физики элементарных частиц принято выделять 3 этапа:

1 этап – от атомов Демокрита до 1932 года.

Превращения, наблюдаемые в мире – это простая перестановка атомов. Атомы неизменны.

2 этап – от 1932 года до 1964 года.

1932 год вошел в историю науки как «год чудес». Первое чудо – открытие нейтрона, которое имело революционное значение, так как фактически означало крушение электромагнитной концепции в физике. До этого ФКМ строилась на двух фундаментальных взаимодействиях: электромагнитном и гравитационном и обходилась всего тремя «кирпичиками мироздания»: электроном, протоном и фотоном. С появлением нейтрона в физике появилось дополнительное фундаментальное взаимодействие, его стали называть ядерным или сильным. Сразу же была предложена протонно – нейтронная модель ядра, согласно которой ядро состоит из протонов и нейтронов, связанных сильным взаимодействием.

При дальнейших исследованиях оказалось, что в отличие от уже известных частиц, нейтрон нестабилен – он спонтанно превращается в другие частицы, одна из которых - нейтрино, частица, которая была открыта позднее, в 1955г, хотя ее существование было предсказано еще П. Дираком в 1931г.

(Слайд № 7) Данное превращение нейтрона обусловлено еще одним взаимодействием – слабым. Это четвертое из фундаментальных взаимодействий.

Взаимодействие

Взаимодействующие частицы

Максимальный радиус действия

Относительные силы взаимодействия

Носители взаимодействия

Гравитационное

Все частицы

10 -39

Гравитоны

Электромагнитное

Частицы с электрическими зарядами

10 -2

Фотоны

Сильное

Нуклоны

Кварки

10 -15

Мезоны

Глюоны

Слабое

Лептоны

Кварки

10 -17

10 -3

Промежуточные бозоны

Но! Год чудес еще не закончился. Американский физик К.Д. Андерсон обнаружил первую античастицу – позитрон, существование которой теоретически предсказал П.Дирак в 1928 году.

(Слайд № 8) Позитрон образуется из гамма - кванта с большой энергией: γ → е - + е + (электронно – позитронная пара).

Здесь необходимо упомянуть еще об одном важном моменте:

с открытием позитрона рушилась перегородка между веществом и полем. Оказывается, поле может превращаться в вещество, а вещество в поле.

Реакция аннигиляции: е - + е + → γ + γ

В настоящее время обнаружено, что античастица есть у каждой частицы. Представление ученых об «элементарности» частиц изменилось, когда были открыты античастицы.

Если к началу 1932 г было известны 4 элементарные частицы: электрон, протон, нейтрон, фотон, то к середине 20 века в арсенале экспериментальной физики появились мощные ускорители, и число элементарных частиц, открытых с помощью новой техники, сильно возросло, их число стало измеряться сотнями (на сегодняшний день открыто около 400 частиц). Среди них мезоны, бозоны, гипероны и другие.

Практически все они оказались нестабильными. Самая долгоживущая частица – нейтрон (15 минут).

(Слайд № 9) Кроме того, выяснилось, что все частицы могут испытывать различные превращения (самопроизвольные или при столкновении с другими частицами) и это является их характерной особенностью. (записать)

В 1964 г американский физик М.Гелл-Манн и независимо от него Дж. Цвейг выдвинули гипотезу о том, что сильновзаимодействующие частицы построены из трех частиц, получивших название кварков. С этого момента в физике элементарных частиц начался

3 этап, который продолжается по сей день. Более сложными стали и экспериментальные методы.

(Слайд №) В 2008 году в работу был запущен Большой Адронный Коллайдер, расположенный на территории Швейцарии и Франции. Большим он называется из-за своих размеров: диаметр кольца 27 км. На строительство БАК было потрачено 8 миллиардов долларов и 20 лет. Для записи информации с тысяч детекторов было создано одно из самых больших файловых хранилищ на планете. БАК позволит провести эксперименты, которые ранее провести было невозможно.

    Первичное осмысление и закрепление знаний.

(Слайд №) Итак,

    В современной физике элементарными частицами называют мельчайшие частицы материи, не являющиеся атомами или атомными ядрами.

2) Давайте вместе попытаемся выделить основные свойства элементарных частиц:

Масса;

Заряд;

Время жизни;

Взаимопревращаемость;

Участие в фундаментальных взаимодействиях;

И другие, названия которых совершенно непривычны нашему уху

Барионный заряд;

Странность, очарование, …..

3) Физика элементарных частиц изучает явления, происходящие на сверхмалых (R = 10 -15 м) расстояниях, в течение сверхмалых (t = 10 -8 с) промежутков времени и при сверхвысоких энергиях (Е 1 ГэВ).

4) Взаимопревращаемость – характерное свойство всех элементарных частиц.

5) Существование античастиц;

6) Превращение поля в вещество и вещества в поле (Аннигиляция частиц и античастиц);

7) Количество ЭЧ перевалило за 400, поэтому возникла необходимость в их классификации.

8) Для классификации элементарных частиц можно выбрать какие- то общие свойства, но один из наиболее удачных способов классификации ЭЧ основан на взаимодействиях частиц.

(таблица 2) (Слайд №)

Для закрепления полученных знаний предлагаю выполнить тест. (учащиеся выполняют тест с дальнейшей самопроверкой)

Тест.

    Какое из перечисленных излучений не отклоняется в магнитном поле?

    Альфа – частицы;

    Поток протонов;

    Бета – частицы;

    Гамма – излучение.

    Какое из представлений о строении атома верно? Большая часть атома сосредоточена…

    В ядре, заряд электронов положителен;

    В ядре, заряд ядра отрицателен;

    В электронах, заряд электронов отрицателен;

    В ядре, заряд электронов отрицателен.

    Ядро состоит из…

    Нейтронов и электронов;

    Протонов и нейтронов;

    Протонов и электронов;

    Нейтронов.

    При каких ядерных процессах возникает нейтрино?

    При альфа – распаде;

    При бета – распаде;

    При излучении гамма – квантов;

    При любых ядерных превращениях;

    При аннигиляции электрона и позитрона:

    Выделяется энергия с излучением;

    Рождается новая пара электрон – позитрон;

    Поглощается энергия;

    Атом переходит в возбужденное состояние.

(Слайд №) Результаты теста:

Вопрос

Ответ

(Слайд №) Домашнее задание: Глава 14, 114, 115, статья о кварках, Интернет – ресурсы для желающих узнать больше.

    Итоги урока и рефлексия. (Слайд №)

Итак, сегодня на уроке мы с вами познакомились с интересным миром элементарных частиц, но современная картина мира элементарных частиц не является окончательной. Впереди нас ждут захватывающие теоретические и экспериментальные открытия, которые расширят и углубят наши понятия о мире, в котором мы живем, дадут нам новые технологии и возможности. Но не будем забывать, что Мир сложнее, чем нам кажется.

Вернемся к вопросам начала урока (Слайд №)

    Существуют ли другие частицы?

    Каковы их свойства?

    Что характерно для элементарных частиц?

    Сколько частиц может существовать?

    Будут ли открыты новые?

На память о нашей встрече я приготовила для вас закладки.

У вас на столах есть конверты с фишками, а на доске – модель Вселенной, пока еще не наполненная частицами. Если вам понравился урок и вы узнали что то новое – прикрепите фишку красного цвета – протон, если не понравилось – зеленый электрон, если вы остались равнодушны к происходящему – синий нейтрон.

Спасибо за работу, желаю успехов в изучении физики!

>> Три этапа в развитии физики элементарных частиц

Глава 14. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ

В этой главе речь пойдет о частицах, которые нельзя разделить и из которых построена вся материя.

§ 114. ТРИ ЭТАПА В РАЗВИТИИ ФИЗИКИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Вы уже более или менее знакомы с электроном, фотоном , протоном и нейтроном. Но что же такое элементарная частица?

Этап первый. От электрона до позитрона: 1897-1932 гг. (Элементарные частицы - «атомы Демокрита» на более глубоком уровне.)

Когда греческий физик Демокрит назвал простейшие нерасчленимые далее частицы атомами (слово атом, напомним, означает «неделимый»), то ему, вероятно, все представлялось в принципе не очень сложным. Различные предметы, растения, животные состоят из неделимых, неизменных частиц. Превращения, наблюдаемые в мире, - это простая перестановка атомов. Все в мире течет, все изменяется, кроме самих атомов, которые остаются неизменными.

Но в конце XIX в. было открыто сложное строение атомов и был выделен электрон как составная часть атома. Затем, уже в XX в., были открыты протон и нейтрон - частицы, входяпцие в состав атомного ядра. Поначалу на все эти частицы смотрели точно так, как Демокрит смотрел на атомы: их считали неделимыми и неизменными первоначальными сущностями, основными кирпичиками мироздания.

Этап второй. От позитрона до кварков: 1932-1964 гг. (Все элементарные частицы превращаются друг в друга.) Ситуация привлекательной ясности длилась недолго. Все оказалось намного сложнее: как выяснилось, неизменных частиц нет совсем. В самом слове элементарная заключается двоякий смысл. С одной стороны, элементарный - это само собой разумеющийся, прос:тейший. С другой стороны, под элементарным понимается нечто фуидаментальное, лежащее в основе вещей (именно в этом смысле сейчас и называют субатомные частицы элементарными).

Считать известные сейчас элементарные частицы подобными неизменным атомам Демокрита мешает следующий простой факт. Ни одна из частиц не бессмертна. Большинствo частиц, называемых сейчас элементарными, не может прожить более двух миллионных долей секунды, даже в отсутствие какого-либо воздействия извне. Свободный нейтрон (нейтрон, находящийся вне атомного ядра) живет в среднем 15 мин.

Лишь частицы фотон, электрон, протон и нейтрино сохраняли бы свою неизменность, если бы каждая из них была одна в целом мире (нейтрино лишено электрического заряда, и его масса покоя, по-видимому, равна нулю).

Но у электронов и протонов имеются опаснейшие собратья - позитроны и антипротоны, при столкновении с которыми происходит взаимное уничтожение этих частиц и образование новых.

Фотон, испущенный настольной лампой, живет не более 10 -8 с. Это то время, которое ему нужно, чтобы достичь страницы книги и поглотиться бумагой.

Лишь нейтрино почти бессмертны, так как они чрезвычайно слабо взаимодействуют с другими частицами. Однако и нейтрино гибнут при столкновении с другими частицами, хотя такие столкновения случаются крайне редко.

Итак, в вечном стремлении к отысканию неизменного в нашем изменчивом мире ученые оказались не на «гранитном основании», а на «зыбком песке».

Все элементарные частицы превращаются друг в друга, и эти взаимные превращения - главный факт их существования.

Превращения элементарных частиц ученые наблюдали при столкновениях частиц высоких энергий. Представления о неизменности элементарных частиц оказались несостоятельными. Но идея об их неразложимости сохранилась. Элементарные частицы уже далее неделимы, но они неисчерпаемы по своим свойствам. Вот что заставляет так думать.

Пусть у нас возникло естественное желание исследовать, состоит ли, например, электрон из каких-либо других субэлементарных частиц. Что нужно сделать для того, чтобы попытаться расчленить электрон ? Можно придумать только один способ. Это тот же способ, к которому прибегает ребенок, если он хочет узнать, что находится внутри пластмассовой игрушки, - сильный удар.

Разумеется, по электрону нельзя ударить молотком. Для этого можно воспользоваться другим электроном, летящим с огромной скоростью, или какой-либо иной движущейся с большой скоростью элементарной частицей.

Современные ускорители сообщают заряженным частицам скорости, очень близкие к скорости света.

Что же происходит при столкновении частиц сверхвысокой энергии? Они отнюдь не дробятся на нечто такое, что можно было бы назвать их составными частями. Нет, они рождают новые частицы из числа тех, которые уже фигурируют в списке элементарных частиц. Чем больше энергия сталкивающихся частиц, тем большее количество частиц рождается. При этом возможно появление частиц с большей массой, чем сталкивающиеся частицы. Главное, что надо отметить, -это то, что всегда выполняется закон сохранения энергии.

На рисунке 14.1 вы видите результат столкновения ядра углерода , имевшего энергию 60 млрд эВ (жирная верхняя линия), с ядром серебра фотоэмульсии. Ядро раскалывается на осколки, разлетающ,иеся в разные стороны. Одновременно рождается много новых элементарных частиц - пионов. Подобные реакции при столкновениях релятивистских ядер, полученных в ускорителе, впервые в мире осуществлены в лаборатории высоких энергий Объединенного института ядерных исследований в г. Дубне под руководством академика А. М. Балдина. Лишенные электронной оболочки ядра были получены путем ионизации атомов углерода лазерным лучом.

Возможно, конечно, что при столкновениях частиц с недоступной пока нам энергией будут рождаться и какие-то новые, еще неизвестные частицы. Но сути дела это не изменит. Рождаемые при столкновениях новые частицы никак нельзя рассматривать как составные части частиц-«родителей». Ведь «дочерние» частицы, если их ускорить, могут, не изменив своей природы , породить, в свою очередь, при столкновениях сразу несколько таких же в точности частиц, какими были их «родители», да еще и множество других частиц.

Итак, по современным представлениям, элементарные частицы - это первичные, неразложимые далее частицы, из которых построена вся материя. Однако неделимость элементарных частиц не означает, что у них отсутствует внутренняя структура.

Этап третий. От гипотезы о кварках (1964 г.) до наших дней. (Большинство элементарных частиц имеет сложную структуру.) В 60-е гг. возникли сомнения в том, что все частицы, называемые сейчас элементарными, полностью оправдывают это название. Основание для сомнений простое: этих частиц очень много.

Открытие новой элементарной частицы всегда составляло и сейчас составляет выдающийся триумф науки. Но уже довольно давно к каждому очередному триумфу начала примешиваться доля беспокойства. Триумфы стали следовать буквально друг за другом.

Была открыта группа так называемых странных частиц: К-мезонов и гиперонов с массами, превышающими массу нуклонов. В 70-е гг. к ним прибавилась большая группа частиц с еще большими массами, названных очарованными.

Кроме того, были открыты короткоживущие частицы с временем жизни порядка 10 -22 -10 -23 с. Эти частицы были названы резонансами, и их число перевалило за двести.

Вот тогда-то (в 1964 г.) М. Гелл-Манном и Дж. Цвейгом была предложена модель, согласно которой все частицы, участвующие в сильных (ядерных) взаимодействиях, - адроны - построены из более фундаментальных (или первичных) частиц - кварков.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Для того чтобы объяснить свойства и поведение элементарных частиц, их приходится наделять, кроме массы, электрического заряда и типа, рядом дополнительных, характерных для них величин (квантовых чисел), о которых мы поговорим ниже.

Элементарные частицы обычно подразделяются на четыре класса . Помимо этих классов, предполагается существование ещё одного класса частиц – гравитонов (квантов гравитационного поля). Экспериментально эти частицы ещё не обнаружены.

Дадим краткую характеристику четырем классам элементарных частиц.

К одному из них относится только одна частица – фотон .

Фотоны (кванты электромагнитного поля) участвуют в электромагнитных взаимодействиях, но не обладают сильным и слабым взаимодействием.

Второй класс образуют лептоны , третий – адроны и, наконец, четвертый – калибровочные бозоны (табл. 2)

Таблица 2

Элементарные частицы

Лептоны

Калибровочные

бозоны

Адроны

n , p ,

гипероны

Барионные

резонансы

Мезонные

резонансы

Лептоны (греч. «лептос » – лёгкий) - частицы , участвующие в электромагнитных и слабых взаимодействиях . К ним относятся частицы, не обладающие сильным взаимодействием: электроны (), мюоны (), таоны (), а также электронные нейтрино (), мюонные нейтрино () и тау-нейтрино (). Все лептоны имеют спины, равные 1/2 , и следовательно являются фермионами . Все лептоны обладают слабым взаимодействием. Те из них, которые имеют электрический заряд (т.е. мюоны и электроны), обладают также и электромагнитным взаимодействием. Нейтрино участвуют только в слабых взаимодействиях.

Адроны (греч. «адрос » – крупный, массивный) - частицы , участвующие в сильных , электромагнитных и слабых взаимодействиях. Сегодня известно свыше сотни адронов и их подразделяют на барионы и мезоны .

Барионы - адроны , состоящие из трёх кварков (qqq ) и имеющие барионное число B = 1.

Класс барионов объединяет в себе нуклоны (p , n ) и нестабильные частицы с массой большей массы нуклонов, получившие название гиперонов (). Все гипероны обладают сильным взаимодействием, и следовательно активно взаимодействуют с атомными ядрами. Спин всех барионов равен 1/2 , так что барионы являются фермионами . За исключением протона, все барионы нестабильны. При распаде бариона, наряду с другими частицами, обязательно образуется барион. Эта закономерность является одним из проявлений закона сохранения барионного заряда .

Мезоны - адроны , состоящие из кварка и антикварка () и имеющие барионное число B = 0.

Мезоны – сильно взаимодействующие нестабильные частицы, не несущие так называемого барионного заряда. К их числу принадлежат -мезоны или пионы (), K-мезоны, или каоны (), и -мезоны. Массы и мезонов одинакова и равна 273,1 , 264,1 время жизни, соответственно, и с. Масса К-мезонов составляет 970 . Время жизни К-мезонов имеет величину порядка с. Масса эта-мезонов 1074 , время жизни порядка с. В отличие от лептонов, мезоны обладают не только слабым (и если они заряжены, электромагнитным), но также и сильным взаимодействием, проявляющимся при взаимодействии их между собой, а также при взаимодействии между мезонами и барионами. Спин всех мезонов равен нулю, так что они являются бозонами .

Калибровочные бозоны - частицы , осуществляющие взаимодействие между фундаментальными фермионами (кварками и лептонами). Это частицы W + , W – , Z 0 и восемь типов глюонов g. Сюда же можно отнести и фотон γ.

Свойства элементарных частиц

Каждая частица описывается набором физических величин – квантовых чисел, определяющих её свойства. Наиболее часто употребляемые характеристики частиц следующие.

Масса частицы , m . Массы частиц меняются в широких пределах от 0 (фотон) до 90 ГэВ (Z -бозон). Z -бозон - наиболее тяжелая из известных частиц. Однако могут существовать и более тяжелые частицы. Массы адронов зависят от типов входящих в их состав кварков, а также от их спиновых состояний.

Время жизни , τ. В зависимости от времени жизни частицы делятся на стабильные частицы , имеющие относительно большое время жизни, и нестабильные .

К стабильным частицам относят частицы, распадающиеся по слабому или электромагнитному взаимодействию. Деление частиц на стабильные и нестабильные условно. Поэтому к стабильным частицам принадлежат такие частицы, как электрон, протон, для которых в настоящее время распады не обнаружены, так и π 0 -мезон, имеющий время жизни τ = 0.8×10 - 16 с.

К нестабильным частицам относят частицы, распадающиеся в результате сильного взаимодействия. Их обычно называют резонансами . Характерное время жизни резонансов - 10 - 23 -10 - 24 с.

Спин J . Величина спина измеряется в единицах ħ и может принимать 0, полуцелые и целые значения. Например, спин π-, К-мезонов равен 0. Спин электрона, мюона равен 1/2. Спин фотона равен 1. Существуют частицы и с большим значением спина. Частицы с полуцелым спином подчиняются статистике Ферми-Дирака, с целым спином - Бозе–Эйнштейна.

Электрический заряд q . Электрический заряд является целой кратной величиной от е = 1,6×10 - 19 Кл, называемой элементарным электрическим зарядом. Частицы могут иметь заряды 0, ±1, ±2.

Внутренняя четность Р . Квантовое число Р характеризует свойство симметрии волновой функции относительно пространственных отражений. Квантовое число Р имеет значение +1, -1.

Наряду с общими для всех частиц характеристиками, используют также квантовые числа, которые приписывают только отдельным группам частиц.

Квантовые числа : барионное число В , странность s , очарование (charm ) с , красота (bottomness или beauty ) b , верхний (topness ) t , изотопический спин I приписывают только сильновзаимодействующим частицам - адронам .

Лептонные числа L e , L μ , L τ . Лептонные числа приписывают частицам, образующим группу лептонов. Лептоны e , μ и τ участвуют только в электромагнитных и слабых взаимодействиях. Лептоны ν e , n μ и n τ участвуют только в слабых взаимодействиях. Лептонные числа имеют значения L e , L μ , L τ = 0, +1, -1. Например, e - , электронное нейтрино n e имеют L e = +l; , имеют L e = - l. Все адроны имеют .

Барионное число В . Барионное число имеет значение В = 0, +1, -1. Барионы, например, n , р , Λ, Σ, нуклонные резонансы имеют барионное число В = +1. Мезоны, мезонные резонансы имеют В = 0, антибарионы имеют В = -1.

Странность s . Квантовое число s может принимать значения -3, -2, -1, 0, +1, +2, +3 и определяется кварковым составом адронов. Например, гипероны Λ, Σ имеют s = -l; K + - , K – - мезоны имеют s = + l.

Charm с . Квантовое число с с = 0, +1 и -1. Например, барион Λ + имеет с = +1.

Bottomness b . Квантовое число b может принимать значения -3, -2, -1, 0, +1, +2, +3. В настоящее время обнаружены частицы, имеющие b = 0, +1, -1. Например, В + -мезон имеет b = +1.

Topness t . Квантовое число t может принимать значения -3, -2, -1, 0, +1, +2, +3. В настоящее время обнаружено всего одно состояние с t = +1.

Изоспин I . Сильновзаимодействующие частицы можно разбить на группы частиц, обладающих схожими свойствами (одинаковое значение спина, чётности, барионного числа, странности и др. квантовых чисел, сохраняющихся в сильных взаимодействиях) - изотопические мультиплеты . Величина изоспина I определяет число частиц, входящих в один изотопический мультиплет, n и р составляет изотопический дуплет I = 1/2; Σ + , Σ - , Σ 0 , входят в состав изотопического триплета I = 1, Λ - изотопический синглет I = 0, число частиц, входящих в один изотопический мультиплет , 2I + 1.

G - четность - это квантовое число, соответствующее симметрии относительно одновременной операции зарядового сопряжения с и изменения знака третьего компонента I изоспина. G- четность сохраняется только в сильных взаимодействиях.

Рекомендуем почитать

Наверх