Радиоактивность. Виды радиоактивных излучений. Презентация по обж на тему "естественная радиоактивность" открыты полоний и радий

Комнатные растения 30.07.2021
Комнатные растения

  • Древнегреческий философ Демокрит предположил, что тела состоят из мельчайших частиц - атомов (в переводе неделимые).
  • К концу XIX в. появились экспериментальные факты, доказывающие, что атом имеет сложную структуру.

Экспериментальные факты, доказывающие сложное строение атома

  • Электризация тел
  • Ток в металлах
  • Явление электролиза
  • Опыты Иоффе-Милликена

Открытие радиоактивности

в 1896 г. А. Беккерелем.

  • Уран самопроизвольно испускает невидимые лучи

Свойства лучей

  • Ионизируют воздух
  • Разрежают электроскоп
  • Не зависит от того, в какие соединения входит уран

83 – радиоактивны " width="640"

Исследования продолжили Мария и Пьер Кюри

  • торий 1898г,
  • полоний,
  • радий (лучистый)

z 83 – радиоактивны


  • - испускание ядрами некоторых элементов различных частиц: α -частиц; электронов; γ -квантов (α , β , γ -излучения).
  • - способность атомов некоторых радиоактивных элементов к самопроизвольному излучению

Состав радиоактивного излучения

1899 г Э. Резерфорд

В магнитном поле пучок радиоактивного излучения разделялся на три составляющие:

  • Положительно заряженные – α -частицы
  • Отрицательно заряженные – β - частицы
  • Нейтральная компонента излучения – γ -излучение

Все излучения обладают разной проникающей способностью

Задерживаются

  • Лист бумаги 0,1 мм – α -частицы
  • Алюминий 5 мм – α -частицы, β - частицы
  • Свинец 1 см – α -частицы, β - частицы, γ -излучение

Природа α -частиц

  • Ядра атомов гелия
  • m = 4 а.е.м.
  • q = 2 e
  • V = 10000-20000 км/с

Природа β -частиц

  • Электроны
  • V = 0,99с
  • с – скорость света

Природа γ -излучения

  • Электромагнитные волны (фотоны)
  • λ = 10 - 10 м
  • Ионизируют воздух
  • Действуют на фотопластинку
  • Не отклоняются магнитным полем


ИНТЕРЕСНО!

Грибы являются накопителями радиоактивных элементов, в частности цезия. Все виды исследованных грибов можно разделить на четыре группы: - слабо накапливающие - опенок осенний; - средне накапливающие - белый гриб, лисичка, подберезовик; - сильно накапливающие - груздь черный, сыроежка, зеленуха; - аккумуляторы радионуклидов - масленок, польский гриб.


К СОЖАЛЕНИЮ!

  • Жизнь обоих поколений ученых – физиков Кюри была в прямом смысле принесена ей в жертву науке. Мария Кюри, ее дочь Ирэн и зять Фредерик Жолио-Кюри умерли от лучевой болезни, возникшей в результате многолетней работы с радиоактивными веществами.
  • Вот что пишет М.П.Шаскольская: «В те далекие годы, на заре атомного века, первооткрыватели радия не знали о действии излучения. Радиоактивная пыль носилась в их лаборатории. Сами экспериментаторы спокойно брали руками препараты, держали их в кармане, не ведая о смертельной опасности. К счетчику Гейгера поднесен листок из блокнота Пьера Кюри (через 55 лет после того, как в блокноте велись записи!), и ровный гул сменяется шумом, чуть ли не грохотом. Листок излучает, листок как бы дышит радиоактивностью...»

Радиоактивный распад

  • - радиоактивное превращение ядер, происходящее самопроизвольно.


Радиоактивность -

Открытие - 1896 год

  • явление самопроизвольного превращения

неустойчивых ядер в устойчивые,

сопровождающееся испусканием

частиц и излучением энергии.


Исследования радиоактивности

Все химические элементы,

начиная с номера 83 ,

обладают радиоактивностью

1898 год –

открыты полоний и радий


Природа радиоактивного излучения

скорость до 1000000км/с


Виды радиоактивных излучений

  • Естественная радиоактивность;
  • Искусственная радиоактивность.

Свойства радиоактивных излучений

  • Ионизируют воздух;
  • Действуют на фотопластинку;
  • Вызывают свечение некоторых веществ;
  • Проникают через тонкие металлические пластинки;
  • Интенсивность излучения пропорциональна

концентрации вещества;

  • Интенсивность излучения не зависит от внешних факторов (давление, температура, освещенность, электрические разряды).






Защита от радиоактивных

излучений

Нейтроны вода, бетон, земля (вещества, имеющие невысокий атомный номер)

Рентгеновские лучи, гамма-излучение

чугун, сталь, свинец, баритовый кирпич, свинцовое стекло (элементы с высоким атомным номером и имеющие большую плотность)


Радиоактивные превращения

Правило смещения


Изотопы

1911 год, Ф.Содди

Существуют ядра

одного и того же химического элемента

с одинаковым числом протонов,

но различным числом нейтронов – изотопы.

Изотопы имеют одинаковые

химические свойства

(обусловлены зарядом ядра),

но разные физические свойства

(обусловлено массой).



Закон радиоактивного распада

Период полураспада Т

интервал времени,

в течение которого активность

радиоактивного элемента

убывает в два раза.






Радиоактивность вокруг нас (по данным Зеленкова А.Г.)


Методы регистрации ионизирующих излучений

Поглощенная доза излучения –

Отношение энергии ионизирующего

Излучения, поглощенной веществом,

к массе этого вещества.

1 Гр = 1 Дж/кг

Естественный фон на человека 0,002 Гр/год;

ПДН 0,05 Гр/год или 0,001 Гр/нед;

Смертельная доза 3-10 Гр за короткое время


Сцинтилляционный счетчик

В 1903 году У.Крукс

заметил, что частицы,

испускаемые радиоактивным

веществом, попадая на

покрытый сернистым

цинком экран, вызывает

его свечение.

ЭКРАН

Устройство было использовано Э.Резерфордом.

Сейчас сцинтилляции наблюдают и считают

с помощью специальных устройств.


Счетчик Гейгера

В наполненной аргоном трубке пролетающая

через газ частичка ионизирует его,

замыкая цепь между катодом и анодом

и создавая импульс напряжения на резисторе.


Камера Вильсона

1912 г.

Камера заполнена смесью аргона и азота с насыщенными

парами воды или спирта. Расширяя газ поршнем,

переохлаждают пары. Пролетающая частица

ионизирует атомы газа, на которых конденсируется пар,

создавая капельный след (трек).


Пузырьковая камера

1952 г.

Д.Глейзер сконструировал камеру, в которой можно

Исследовать частицы большей энергии, чем в камере

Вильсона. Камера заполнена быстро закипающей жидкостью

сжиженный пропан, гидроген). В перегретой жидкости

исследуемая частица оставляет трек из пузырьков пара.


Искровая камера

Изобретена в 1957 г. Заполнена инертным газом.

Плоскопараллельные пластины расположены близко

друг к другу. На пластины подается высокое напряжение.

При пролете частицы вдоль её траектории проскакивают

искры, создавая огненный трек.


Толстослойные фотоэмульсии

Пролетающая сквозь

фотоэмульсию заряженная

частица действует на

зерна бромистого

серебра и образует

скрытое изображение.

При проявлении

фотопластинки образуется

след - трек.

Преимущества: следы

не исчезают со временем

и могут быть тщательно

изучены.

Метод разработан

В 1958 году

Ждановым А.П. и

Мысовским Л.В.


Получение радиоактивных изотопов

Получают радиоактивные изотопы

в атомных реакторах и на ускорителях

элементарных частиц.

С помощью ядерных реакций можно

получить радиоактивные изотопы

всех химических элементов,

существующих в природе только

в стабильном состоянии.

Элементы под номерами 43, 61, 85 и 87

Вообще не имеют стабильных изотопов

И впервые были получены искусственно.

С помощью ядерных реакций получены

Трансурановые элементы,

начиная с нептуния и плутония

( Z = 93 - Z = 108)


Применение радиоактивных изотопов

Меченые атомы: химические свойства

Радиоактивных изотопов не отличаются

от свойств нерадиоактивных изотопов тех

же элементов. Обнаружить радиоактивные

изотопы можно по их излучению.

Применяют: в медицине, биологии,

криминалистике, археологии,

промышленности, сельском хозяйстве.




Класс: 11

Презентация к уроку





















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока: урок изучения нового материала

Цели урока: ввести и закрепить понятия радиоактивности, альфа-, бета-, гамма-излучения и периода полураспада; изучить правило смещения и закон радиоактивного распада.

Задачи урока:

а) образовательные задачи - объяснить и закрепить новый материал, познакомить с историей открытия явления радиоактивности;

б) развивающие задачи - активизировать мыслительную деятельность учащихся на уроке, реализовать успешное овладение новым материалом, развивать речь, умение делать выводы;

в) воспитательные задачи - заинтересовать и увлечь темой урока, создать личную ситуацию успеха, вести коллективный поиск по сбору материала о радиации, создать условия для развития у школьников умения структурировать информацию.

Ход урока

Учитель:

Ребята, предлагаю вам выполнить следующее задание. Найдите в списке слова, обозначающие явления: ион, атом, протон, электризация, нейтрон, проводник, напряжённость, электричество, диэлектрик, электроскоп, заземление, поле, оптика, линза, сопротивление, напряжение, вольтметр, амперметр, заряд, мощность, освещение, радиоактивность, магнит, генератор, телеграф, компас, намагничивание. Слайд №1.

Дайте определения этим явлениям. Для какого явления мы ещё не можем дать определение? Правильно, для радиоактивности. Слайд №2.
- Ребята, тема нашего занятия – радиоактивность.

На предыдущем уроке некоторые учащиеся получили задание – подготовить сообщения по биографиям ученых: Анри Беккереля, Пьера Кюри, Марии Склодовской-Кюри, Эрнеста Резерфорда. Ребята, как вы думаете, случайно ли именно об этих ученых сегодня должна пойти речь? Может, кто-то из вас уже что-то знает о судьбе и научных достижениях этих людей?

Дети предлагают свои варианты ответов.

Молодцы, вы очень хорошо осведомлены! А теперь давайте послушаем материал докладчиков.
Дети рассказывают об ученых (Приложение №1 о А.Беккереле, Приложение №2 о М.Склодовской-Кюри, Приложение №3 о П.Кюри) и показывают слайды № 3 (о А.Беккереле), № 4 (о М.Склодовской-Кюри), №5 (о П.Кюри).

Учитель:
- Сто лет назад, в феврале 1896г, французский физик Анри Беккерель обнаружил самопроизвольное излучение солей урана 238 U, однако он не понимал природы этого излучения.

В 1898г супруги Пьер и Мария Кюри открыли новые, ранее неизвестные элементы – полоний 209 Po и радий 226 Ra, у которых излучение, аналогичное излучению урана, было значительно более сильным. Радий – редкий элемент; чтобы получить 1 грамм чистого радия, надо переработать не менее 5 тонн урановой руды; его радиоактивность в несколько миллионов раз выше радиоактивности урана. Слайд №6.

Самопроизвольное излучение некоторых химических элементов было названо по предложению П.Кюри радиоактивностью, от латинского radio «излучать». Неустойчивые ядра превращаются в устойчивые. Слайд №7.

Химические элементы с номера 83 являются радиоактивными, то есть самопроизвольно излучают, причем, степень излучения не зависит от того, в состав какого соединения они входят. Слайд №8.

Изучением природы радиоактивного излучения занимался великий физик начала 20 века Эрнест Резерфорд. Ребята, давайте прослушаем сообщение о биографии Э.Резерфорда. Приложение №4, Слайд №9.

Что же представляет из себя радиоактивное излучение? Предлагаю вам самостоятельную работу с текстом: стр. 222 учебника Ф-11 Л.Э.Генденштейна и Ю.И.Дика.

Ребята, ответьте на вопросы:
1. Что представляют собой α-лучи? (α-лучи – это поток частиц, представляющих собой ядра гелия.)
2. Что представляют собой β-лучи? (β-лучи – это поток электронов, скорость которых близка к скорости света в вакууме.)
3. Что представляет собой γ-излучение? (γ-излучение – это электромагнитное излучение, частота которого превышает частоты рентгеновского излучения.)

Итак (Слайд №10), в 1899 г Эрнест Резерфорд обнаружил неоднородность излучения. Исследуя излучение радия в магнитном поле, он обнаружил, что поток радиоактивного излучения имеет сложную структуру: состоит из трех самостоятельных потоков, названных α-, β- и γ-лучами. При дальнейших исследованиях оказалось, что α-лучи представляют из себя потоки ядер атомов гелия, β-лучи – потоки быстрых электронов, а γ-лучи есть электромагнитные волны с малой длиной волны.

Но эти потоки различались еще и своими проникающими способностями. Слайды №11,12.

Превращение атомных ядер часто сопровождается испусканием α-, β-лучей. Если одним из продуктов радиоактивного превращения является ядро атома гелия, то такую реакцию называют α-распадом, если же – электрон, то β-распадом.

Эти два распада подчиняются правилам смещения, которые впервые сформулировал английский ученый Ф.Содди. Давайте посмотрим, как выглядят эти реакции.

Слайды №13 и №14 соответственно:

1. При α-распаде ядро теряет положительный заряд 2e и его масса убывает на 4 а.е.м. В результате α-распада элемент смещается на две клетки к началу периодической системы Менделеева:


2. При β-распаде из ядра вылетает электрон, что увеличивает заряд ядра на 1е, масса же остается почти неизменной. В результате β-распада элемент смещается на одну клетку к концу периодической таблицы Менделеева.

Кроме альфа- и бета-распадов радиоактивность сопровождается гамма-излучением. При этом из ядра вылетает фотон. Слайд №15.

3. γ-излучение – не сопровождается изменением заряда; масса же ядра меняется ничтожно мало.

Давайте попробуем решить задачи на написание ядерных реакций: №20.10; №20.12; №20.13 из сборника заданий и самостоятельных работ Л.А.Кирика, Ю.И. Дика.
- Ядра, которые возникли в результате радиоактивного распада, в свою очередь также могут быть радиоактивны. Возникает цепочка радиоактивных превращений. Ядра, связанные с этой цепочкой, образуют радиоактивный ряд или радиоактивное семейство. В природе существует три радиоактивных семейства: урана, тория и актиния. Семейство урана заканчивается свинцом. Измеряя количество свинца в урановой руде, можно определить возраст этой руды.

Резерфорд опытным путём установил, что активность радиоактивных веществ убывает с течением времени. Для каждого радиоактивного вещества существует интервал времени, на протяжении которого активность убывает в 2 раза. Это время называется периодом полураспада Т.

Как же выглядит закон радиоактивного распада? Слайд №16.

Закон радиоактивного распада установлен Ф. Содди. По формуле находят число не распавшихся атомов в любой момент времени. Пусть в начальный момент времени число радиоактивных атомов N 0 . По истечении периода полураспада их будет N 0 /2. Спустя t = nT их останется N 0 /2 п.

Период полураспада – основная величина, определяющая скорость радиоактивного распада. Чем меньше период полураспада, тем меньше времени живут атомы, тем быстрее происходит распад. Для разных веществ период полураспада имеет разные значения. Слайд №17.

Одинаково опасными являются как быстро, так и медленно распадающиеся ядра. Быстро распадающиеся ядра интенсивно излучают за малый промежуток времени, а медленно распадающиеся ядра радиоактивны на большом интервале времени. С различными уровнями радиации человечество встречается как в естественных условиях, так и в искусственно созданных обстоятельствах. Слайд № 18.

Радиоактивность имеет как отрицательное, так и положительное значение для всего живого на планете Земля. Ребята, давайте посмотрим маленький кинофрагмент о значении радиации для жизни. Слайд №19.

И в заключение нашего урока давайте решим задачу на нахождение периода полураспада. Слайд №20.

Домашнее задание:

  • §31 по учебнику Генденштейна Л.Э и Дика Ю.И., ф-11;
  • с/р №21 (н.у.), с/р №22 (н.у.) по сборнику задач Кирика Л.А. и Дика Ю.И., ф-11.

Методическое обеспечение

1. Л.А.Кирик, Ю.И. Дик, Методические материалы, Физика – 11, издательство «ИЛЕКСА»;
2. Э.Генденштейн, Ю.И. Дик, Физика – 11, издательство «ИЛЕКСА;
3. Л.А.Кирик, Ю.И. Дик, Сборник заданий и самостоятельных работ для 11 класса, издательство «ИЛЕКСА»;
4. Компакт-диск с электронным приложением «ИЛЕКСА», издательство «ИЛЕКСА».

Радиоактивность-явление самопроизвольного превращения неустойчивых
ядер
в
устойчивые,
сопровождающееся
испусканием частиц и излучением энергии.
Кучиев Феликс РТ-11
1

Антуан Анри Беккере́ль

Изображение
фотопластинки
Беккереля
В 1896 году Беккерель случайно открыл
радиоактивность
во
время
работ
по
исследованию фосфоресценции в солях урана.
Исследуя работу Рентгена, он завернул
флюоресцирующий материал - уронил сульфат
калия
в непрозрачный материал вместе с
фотопластинками, с тем, чтобы приготовиться к
эксперименту, требующему яркого солнечного
света.
Однако
ещё
до
осуществления
эксперимента
Беккерель
обнаружил,
что
фотопластинки были полностью засвечены. Это
открытие побудило Беккереля к исследованию
спонтанного испускания ядерного излучения.
В
1903
году
он
получил
совместно
с Пьером и Марией Кюри Нобелевскую премию
по физике «В знак признания его выдающихся
заслуг,
выразившихся
в
открытии
самопроизвольной радиоактивности»
2

Пьер Кюри
Мария Кюри
*В1898 г. Мария и Пьер Кюри открыли
радий
3

Виды радиоактивных излучений

*Естественная радиоактивность;
*Искусственная радиоактивность.
Свойства радиоактивных излучений
*Ионизируют воздух;
*Действуют на фотопластинку;
*Вызывают свечение некоторых веществ;
*Проникают через тонкие металлические пластинки;
*Интенсивность излучения пропорциональна
концентрации вещества;
*Интенсивность излучения не зависит от внешних
факторов (давление, температура,освещенность,
электрические разряды).
4

Проникающая способность радиоактивного излучения

5

* излучаются: два протона и два нейтрона
* проникающая способность: низкая
* облучение от источника: до 10 см
* скорость излучения: 20 000 км/с
* ионизация: 30 000 пар ионов на 1 см пробега
* биологическое действие радиации: высокое
Альфа излучение - это излучение тяжелых,
положительно заряженных альфа частиц, которыми
являются ядра атомов гелия (два нейтрона и два
протона). Альфа частицы излучаются при распаде более
сложных ядер, например, при распаде атомов урана,
радия, тория.
6

Бета излучение

* излучаются: электроны или позитроны
* проникающая способность: средняя
* облучение от источника: до 20 м

* ионизация: от 40 до 150 пар ионов на 1 см
пробега
* биологическое действие радиации: среднее
Бета (β) излучение возникает при превращении одного
элемента в другой, при этом процессы происходят в
самом ядре атома вещества с изменением свойств
протонов и нейтронов.
7

Гамма излучение

* излучаются: энергия в виде фотонов
* проникающая способность: высокая
* облучение от источника: до сотен метров
* скорость излучения: 300 000 км/с
* ионизация: от 3 до 5 пар ионов на 1 см
пробега
* биологическое действие радиации: низкое
Гамма (γ) излучение - это энергетическое электромагнитное
излучение в виде фотонов.
8

Радиоактивные превращения

9

Элементарные частицы

Джозеф Джон Томсон
Эрнест Резерфорд
Джеймс Чедвик
Открыл электрон
Открыл протон
Открыл нейтрон
10

Начиная с 1932г. Было открыто более 400 элементарных частиц

Элементарная частица – микрообъект, который
невозможно разделить на части, но может иметь
внутреннюю структуру.
11

Величины, характеризующие элементарные частицы

*Масса.
*Электрический заряд.
*Время жизни.
12

В 1931 г. английский
физик П.Дирак
теоретически
предсказал
существование
позитрона – античастицы
электрона.
13

В 1932 г. позитрон был
экспериментально открыт
американским физиком
Карлом Андерсоном.
В 1955 г. – антипротон, а в 1956 г.
антинейтрон.
14

ЭЛЕКТРОН – ПОЗИТРОННАЯ ПАРА
возникает при взаимодействии γ-кванта с
веществом.
γ→
е
+
+

Рекомендуем почитать

Наверх