Давление объем и температура газа. Закон Шарля: при постоянном объеме давление газа изменяется прямо пропорционально абсолютной температуре. Пример использования калькулятора

Декоративные 16.08.2024
Декоративные

Закон идеального газа.

Экспериментальный:

Основными параметрами газа являются температура, давление и объём. Объем газа существенно зависит от давления и температуры газа. Поэтому необходимо найти соотношение между объемом, давлением и температурой газа. Такое соотношение называется уравнением состояния.

Экспериментально было обнаружено, что для данного количества газа в хорошем приближении выполняется соотношение: при постоянной температуре объем газа обратно пропорционален приложенному к нему давлению (рис.1) :

V~1/P , при T=const.

Например, если давление, действующее на газ, увеличится вдвое, то объем уменьшится до половины первоначального. Это соотношение известно как закон Бойля (1627-1691)-Мариотта(1620-1684) , его можно записать и так:

Это означает, что при изменении одной из величин, другая также изменится, причем так, что их произведение останется постоянным.

Зависимость объема от температуры (рис.2) была открыта Ж. Гей-Люссаком. Он обнаружил, что при постоянном давлении объем данного количества газа прямо пропорционален температуре:

V~T , при Р =const.

График этой зависимости проходит через начало координат и, соответственно, при 0К его объём станет равный нулю, что очевидно не имеет физического смысла. Это привело к предположению, что -273 0 С минимальная температура, которую можно достичь.

Третий газовый закон, известный как закон Шарля, названный в честь Жака Шарля (1746-1823). Этот закон гласит: при постоянном объеме давление газа прямо пропорционально абсолютной температуре (рис.3):

Р ~T, при V=const.

Хорошо известным примером действия этого закона является баллончик аэрозоля, который взрывается в костре. Это происходит из-за резкого повышения температуры при постоянном объеме.

Эти три закона являются экспериментальными, хорошо выполняющимися в реальных газах только до тех пор, пока давление и плотность не очень велики, а температура не слишком близка к температуре конденсации газа, поэтому слово "закон" не очень подходит к этим свойствам газов, но оно стало общепринятым.

Газовые законы Бойля-Мариотта, Шарля и Гей-Люссака можно объеденить в одно более общее соотношение между объёмом, давлением и температурой, которое справедливо для определенного количества газа:

Это показывает, что при изменении одной из величин P , V или Т, изменятся и две другие величины. Это выражение переходит в эти три закона, при принятии одной величины постоянной.

Теперь следует учесть ещё одну величину, которую до сих пор мы считали постоянной - количество этого газа. Экспериментально подтверждено, что: при постоянных температуре и давлении замкнутый объём газа увеличивается прямо пропорционально массе этого газа:

Эта зависимость связывает все основные величины газа. Если ввести в эту пропорциональность коэффициент пропорциональности, то мы получим равенство. Однако опыты показывают, что в разных газах этот коэффициент разный, поэтому вместо массы m вводят количество вещества n (число молей).

В результате получаем:

Где n - число молей, а R - коэффициент пропорциональности. Величина R называется универсальной газовой постоянной. На сегодняшний день самое точное значение этой величины равно:

R=8,31441 ± 0,00026 Дж/Моль

Равенство (1) называют уравнением состояния идеального газа или законом идеального газа.

Число Авогадро; закон идеального газа на молекулярном уровне:

То, что постоянная R имеет одно и то же значение для всех газов, представляет собой великолепное отражение простоты природы. Это впервые, хотя и в несколько другой форме, осознал итальянец Амедео Авогадро (1776-1856). Он опытным путём установил, что равные объёмы объемы газа при одинаковых давлении и температуре содержат одинаковое число молекул. Во-первых: из уравнения (1) видно, что если различные газы содержат равное число молей, имеют одинаковые давления и температуры, то при условии постоянного R они занимают равные объёмы. Во-вторых: число молекул в одном моле для всех газов одинаково, что непосредственно следует из определения моля. Поэтому мы можем утверждать, что величина R постоянна для всех газов.

Число молекул в одном моле называется числом Авогадро N A . В настоящее время установлено, что число Авогадро равно:

N A =(6,022045 ± 0,000031) · 10 -23 моль -1

Поскольку общее число молекул N газа равно числу молекул в одном моле, умноженному на число молей (N = nN A), закон идеального газа можно переписать следующим образом:

Где k называется постоянной Больцмана и имеет значение равное:

k= R/N A =(1,380662 ± 0,000044) · 10 -23 Дж/К

Справочник компрессорной техники

Поскольку при изобарическом процессе P постоянно, то после сокращения на P формула принимает вид

V 1 /T 1 =V 2 /T 2 ,

V 1 /V 2 =T 1 /T 2 .

Формула является математическим выражением закона Гей-Люссака: при постоянной массе газа и неизменном давлении объём газа прямо пропорционален его абсолютной температуре.

Изотермический процесс

Процесс в газе, происходящий при постоянной температуре, называется изотермическим. Изотермический процесс в газе был изучен английским ученым Р.Бойлем и французским ученым Э. Мариотом. Установленная ими опытным путем связь получается непосредственно из формулы путем сокращения на T:

p 1 V 1 =p 2 V 2 ,

p 1 /p 2 =V 1 /V 2.

Формула является математическим выражением закона Бойля - Мариота : при постоянной массе газа и неизменной температуре давление газа обратно пропорционально его объему. Иначе говоря, в этих условиях произведение объёма газа на соответствующее давление есть величина постоянная:

График зависимости p от V при изотермическом процессе в газе представляет собой гиперболу и называется изотермой. На рисунке 3 изображены изотермы для одной и той же массы газа, но при разных температурах Т. При изотермическом процессе плотность газа изменяется прямо пропорционально давлению:

ρ 1 /ρ 2= p 1 /p 2

Зависимость давления газа от температуры при постоянном объеме

Рассмотрим, как зависит давление газа от температуры, когда его масса и объем остаются постоянными. Возьмем закрытый сосуд с газом и, будем нагревать его (рисунок 4). Температуру газа t будем определять с помощью термометра, а давление манометром М.

Сначала поместим сосуд в тающий снег и давление газа при 0 0 С обозначим р 0 , а затем будем постепенно нагревать наружный сосуд и записывать значения р и t для газа.

Оказывается, что график зависимости р и t, построенный на основании такого опыта, имеет вид прямой линии (рисунок 5).

Если продолжить этот график влево, то он пересечется с осью абсцисс в точке А, соответствующей нулевому давлению газа. Из подобия треугольников на рисунке 5, а можно записать:

P 0 /OA=Δp/Δt,

l/OA=Δp/(p 0 Δt).

Если обозначить постоянною l/ОА через α, то получим

α = Δp//(p 0 Δt),

Δp= α p 0 Δt.

По смыслу коэффициент пропорциональности α в описанных опытах должен выражать зависимость изменения давления газа от его рода.

Величина γ, характеризующая зависимость изменения давления газа от его рода в процессе изменения температуры при постоянном объёме и неизменной массе газа, называется температурным коэффициентом давления. Температурный коэффициент давления показывает, на какую часть давления газа, взятого при 0 0 С, изменяется при нагревании на 1 0 С. Выведем единицу температурного коэффициента α в СИ:

α =l ΠA/(l ΠA*l 0 C)=l 0 C -1

При этом длина отрезка ОА получается равной 273 0 С. Таким образом, для всех случаев температура, при которой давление газа должно обращаться в нуль, одинакова и равна – 273 0 С, а температурный коэффициент давления α =1/ОА=(1/273) 0 С -1 .




При решении задач обычно пользуются приближенным значением α равным α =1/ОА=(1/273) 0 С -1 . Из опытов значение α впервые было определено французским физиком Ж. Шарлем, который в 1787г. установил следующий закон: температурный коэффициент давления не зависит от рода газа и равен (1/273,15) 0 С -1 . Заметим, что это верно только для газов, имеющих небольшую плотность, и при небольших изменениях температуры; при больших давлениях или низких температурах α зависит от рода газа. Точно подчиняется закону Шарля лишь идеальный газ. Выясним, как можно определить давление любого газа р, при произвольной температуре t.

Подставив эти значения Δр и Δt в формулу, получим

p 1 -p 0 =αp 0 t,

p 1 =p 0 (1+αt).

Поскольку α~273 0 С, при решении задач формулу можно использовать в следующем виде:

p 1 =p 0

К любому изопроцессу применим объединенный газовый закон с учетом того, что один из параметров остается постоянным. При изохорическом процессе постоянным остается объём V, формула после сокращения на V принимает вид

Связь между давлением, температурой, объемом и количеством молей газа ("массой" газа). Универсальная (молярная) газовая постоянная R. Уравнение Клайперона-Менделеева = уравнение состояния идеального газа.

Ограничения практической применимости:

  • ниже -100°C и выше температуры диссоциации / разложения
  • выше 90 бар
  • глубже чем 99%

Внутри диапазона точность уравнения превосходит точность обычных современных инженерных средств измерения. Для инженера важно понимать, что для всех газов возможна существенная диссоциация или разложение при повышении температуры.

  • в СИ R= 8,3144 Дж/(моль*К) - это основная (но не единственная) инженерная система измерений в РФ и большинстве стран Европы
  • в СГС R= 8,3144*10 7 эрг/(моль*К) - это основная (но не единственная) научная система измерений в мире
  • m -масса газа в (кг)
  • M -молярная масса газа кг/моль (таким образом (m/M) - число молей газа)
  • P -давление газа в (Па)
  • Т -температура газа в (°K)
  • V -объем газа в м 3

Давайте решим парочку задач относительно газовых объемных и массовых расходов в предположении, что состав газа не изменяется (газ не диссоциирует) - что верно для большинства газов в указанных выше .

Данная задача актуальна в основном, но не только, для применений и устройств, в которых напрямую измеряется объем газа.

V 1 и V 2 , при температурах, соответственно, T 1 и T 2 и, пусть T 1 < T 2 . Тогда мы знаем, что:

Естественно, V 1 < V 2

  • показатели объемного счетчика газа тем "весомее", чем ниже температура
  • выгодно поставлять "теплый" газ
  • выгодно покупать "холодный" газ

Как с этим бороться? Необходима хотя бы простая температурная компенсация, т.е в считающее устройство должна подаваться информация с дополнительного датчика температуры.

Данная задача актуальна в основном, но не только, для применений и устройств, в которых напрямую измеряется скорость газа.

Пусть счетчик () в точке доставки дает объемные накопленные расходы V 1 и V 2 , при давлениях, соответственно, P 1 и P 2 и, пусть P 1 < P 2 . Тогда мы знаем, что:

Естественно, V 1 >V 2 для одинаковых количеств газа при данных условиях. Попробуем сформулировать несколько важных на практике выводов для данного случая:

  • показатели объемного счетчика газа тем "весомее", чем выше давление
  • выгодно поставлять газ низкого давления
  • выгодно покупать газ высокого давления

Как с этим бороться? Необходима хотя бы простая компенсация по давлению, т.е в считающее устройство должна подаваться информация с дополнительного датчика давления.

В заключение, хотелось бы отметить, что, теоретически, каждый газовый счетчик должен иметь и температурную компенсацию и компенсацию по давлению. Практически же......

Математическим выражением закона Бойля-Мариотта являются формулы P 2 /P 1 =V 1 /V 2 или PV=const.

Пример: при некоторой температуре давление газа, занимающего объем 3 л, равно 93,3 кПа. Каким станет давление, если, не изменяя температуры, уменьшить объем газа до 2,8л?

Решение: обозначив искомое давление через Р 2 , можно записать
Р 2 /93,3=3/2,8. Отсюда: Р 2 =93,3*3/2,8=100 кПа.

Зависимость между объемом газа, давлением и температурой можно выразить общим уравнением, объединяющим законы Бойля-Мариотта и Гей-Люссака

где Р и V - давление и объем газа при данной температуре Т, Р о, V o - давление и объем газа при нормальных условиях.

Пример: при 25°С и давлении 99,3 кПа некоторое количество газа занимает объем 152 мл. Найти, какой объем займет это же количество газа при 0°С и давлении 101,33 кПа?

Решение: подставляя данные в уравнение, получаем

Vо=РVоТ/Р 0 Т=99,ЗкПа*152мл*273К/(101,33кПа*298К)=136,5мл.

Если условия, в которых находится газ, отличаются от нормальных, то используют уравнение Менделеева-Клапейрона, которое связывает все основные параметры газа

где Р - давление газа, Па; V - объем газа, м 3 ; m, - масса газа, г; М - мольная масса газа, г/моль; R - универсальная газовая постоянная, 11=8,31Дж/(моль*К); Т - температура газа, К.

ТЕМА 2.2ПАРЦИАЛЬНОЕ ДАВЛЕНИЕ ГАЗОВ

При определении молекулярных весов газообразных веществ часто приходится измерять объем газа, собранный над водой и потому насыщенного водяным паром. Определяя в этом случае давление газа, необходимо вводить поправку на парциальное давление водяного пара.

Парциальным давлением (р) называется та часть общего давления, производимого газовой смесью, которая приходится на долю данного газа.

При этом парциальное давление газа в смеси равно тому давлению, которое он производил бы, занимая один такой же объем, какой занимает смесь.

Пример: смешивают 2л кислорода и 4л оксида серы SO 2 , взятых при одинаковом давлении, равном 100 кПа; объем смеси 6л. Определить парциальное давление газов в смеси.

Решение: по условию задачи объем кислорода увеличился после смешения в 6/2=3 раза, объем оксида серы - в 6/4=1,5 раза. Во столько же раз уменьшились парциальные давления газов. Следовательно

р(О 2)= 100/3=33,3 кПа, p(SO 2)=100/l,5=66,7 кПа.

Согласно закону парциальных давлений, общее давление смеси газов, не вступающих друг с другом в химическое взаимодействие, равно сумме парциальных давлений газов, составляющих смесь.

Пример: смешивают Зл СО 2 , 4л О 2 и 6 л N 2 . До смешивания давление СО 2 , О 2 , N 2 .составляло соответственно 96, 108 и 90,6 кПа. Общий объем смеси 10л. Определить давление смеси.

Решение: находим парциальные давления отдельных газов

р(СО 2)=96*3/10=28,8кПа,

р(О 2)=108*4/10=43,2кПа,

p(N 2)=90,6*6/l 0=54,4кПа.

Общее давление газовой смеси равно сумме парциальных давлений

Р(смеси)=28,8кПа+43,2кПа+54,4кПа=126,4 кПа.

ВОПРОСЫ И ЗАДАЧИ ДЛЯ САМОКОНТРОЛЯ

1. Какие условия, характеризующие газы, называются нормальными?

2. Какой объем занимает 1 моль любого газа при нормальных условиях?

3. Дайте формулировку закона Авогадро.

2. Изохорический процесс . V- постоянен. P и T изменяются. Газ подчиняется закону Шарля. Давление, при постоянном объёме, прямо пропорционально абсолютной температуре

3. Изотермический процесс . T- постоянна. P и V изменяются. В этом случае газ подчиняется закону Бойля - Мариотта. Давление данной массы газа при постоянной температуре обратно пропорциональна объёму газа .

4. Из большого числа процессов в газе, когда изменяются все параметры, выделяем процесс, подчиняющийся объединенному газовому закону. Для данной массы газа произведение давление на объём, делённое на абсолютную температуру есть величина постоянная .

Этот закон применим для большого числа процессов в газе, когда параметры газа меняются не очень быстро.

Все перечисленные законы для реальных газов являются приближёнными. Погрешности увеличиваются с ростом давления и плотности газа.

Порядок выполнения работы:

1. часть работы .

1. Шланг стеклянного шара опускаем в сосуд с водой комнатной температуры (рис.1 в приложении). Затем шар нагреваем (руками, тёплой водой).Считая давление газа постоянным, напишите как объём газа зависит от температуры

Вывод:………………..

2. Соединим шлангом цилиндрический сосуд с миллиманометром (рис. 2). Нагреем металлический сосуд и воздух в нём с помощью зажигалки. Считая объём газа постоянным, напишите, как зависит давление газа от температуры.

Вывод:………………..

3. Цилиндрический сосуд, присоединённый к миллиманометру сожмем руками, уменьшая его объём (рис.3). Считая температуру газа постоянной, напишите, как зависит давление газа от объёма.

Вывод:……………….

4. Соединим насос с камерой от мяча и закачаем несколько порций воздуха (рис.4). Как изменилось давление объём и температура закаченного в камеру воздуха?

Вывод:………………..

5. Нальём в бутылку около 2 см 3 спирта, закроем пробкой со шлангом (рис. 5) , прикреплённым к нагнетающему насосу. Сделаем несколько качков до момента вылета пробки из бутылки. Как изменяются давление объём и температура воздуха (и паров спирта) после вылета пробки?



Вывод:………………..

Часть работы.

Проверка закона Гей - Люссака.

1. Нагретую стеклянную трубку достаём из горячей воды и опускаем открытым концом в небольшой сосуд с водой.

2. Удерживаем трубку вертикально.

3. По мере охлаждения воздуха в трубке вода из сосуда заходит в трубку (рис 6).

4. Находим и

Длина трубки и столба воздуха (в начале опыта)

Объём тёплого воздуха в трубке,

Площадь поперечного сечения трубки.

Высота столба воды, зашедшей в трубке при остывании воздуха в трубке.

Длина столба холодного воздуха в трубке

Объём холодного воздуха в трубке.

На основании закона Гей-Люссака У нас для двух состояний воздуха

Или (2) (3)

Температура горячей воды в ведре

Комнатная температура

Нам нужно проверить уравнение (3) и, следовательно закон Гей – Люссака.

5. Вычислим

6. Находим относительную погрешность измерения при измерении длины принимая Dl=0.5 см.

7. Находим абсолютную погрешность отношения

=……………………..

8. Записываем результат показания

………..…..

9. Находим относительную погрешность измерения Т, принимая

10. Находим абсолютную погрешность вычисления

11. Записываем результат вычисления

12. Если интервал определения отношения температур (хотя бы частично) совпадает с интервалом определения отношения длин столбов воздуха в трубке, то уравнение (2) справедливо и воздух в трубке подчиняется закону Гей- Люссака.

Вывод:……………………………………………………………………………………………………

Требование к отчёту:

1. Название и цель работы.

2. Перечень оборудования.

3. Нарисовать рисунки с приложения и сделать выводы для опытов 1, 2, 3, 4.

4. Написать содержание, цель, расчёты второй части лабораторной работы.

5. Написать вывод по второй части лабораторной работы.

6. Построить графики изопроцессов (для опытов 1,2,3) в осях: ; ; .

7. Решить задачи:

1. Определить плотность кислорода, если его давление равно 152 кПа, а средняя квадратичная скорость его молекул -545 м/с.

2. Некоторая масса газа при давлении 126 кПа и температуре 295 К занимает объём 500 л. Найти объём газа при нормальных условиях.

3. Найти массу углекислого газа в баллоне вместимостью 40 л при температуре 288 К и давлении 5,07 МПа.

Приложение

Рекомендуем почитать

Наверх